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Gemany 

Received 22 April 1993 

Abstract. Recently fractional calculus has become an important tool in the analysis of 
slow relaxation phenomena, such as stress-strain relationships in polymeric materials. In 
the rheological constitutive equations this implies the replacement of the first-order 
derivatives by fractional derivatives. Here we show that such procedures have hierarchical 
mechanical analogues. We focus on the generalized dashpot and the generalized Maxwell 
model and display the corresponding arrangements. Our models allow a transparent 
interpretation of the parameters which enter the fractional eauations, and reveal that the 
internal dynamics are hierarchically constrained. 

1. Introduction 

Relaxation processes in complex materials often display deviations from~the exponen- 
tial decay form [l, 21. In addition to the stretched-exponential behaviour 

@(t) .cexp(-(t/z)") (1) 

*(t)  = (t/z)-' (2) 

with a E (0, l), many materials show an algebraic decay 

where YE (0,1]. 
In the following, we restrict our considerations to the algebraic time-dependence 

(2) and related patterns. Such behaviour is observed for the stress relaxation of 
viscoelastic materials [3,4], for charge-carrier transport in amorphous solids [5,6], for 
the dielectric relaxation of liquids [7] and solids [8] and for current distributions at 
rough electrode-electrolyte interfaces [9, lo]. Although this work is formulated in 
viscoelastic terms, extensions of the following considerations to other physical 
situations are obvious. 

A standard example for viscoelastic  behaviour^ is the Maxwell model [ll]. 
Consisting of a spring and a dashpot in series, this arrangement possesses a simple 
spatial separation of the solid (elastic) and the fluid (viscous) aspects. In this model 
the stress relaxation is exponential and thus the model is too special to describe real 
viscoelastic materials. As we proceed to show, arrangements of an (in general infinite) 
number of springs and dashpots lead to realistic forms such as equation (2). 

A straightforward method for this would consist in~arranging the Maxwell 
efements in parallet, so that their relaxation function is a sum of exponentials with 
different relaxation times. The physical picture behind such a procedure is that due to 
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spatial inhomogenities in complex materials the relaxation times may vary from 
element to element. By a suitable choice of the weight distribution p(r)  of the spring 
constants E and viscosities T (and therefore the time constants z= T I E )  the superposi- 
tion 
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@ ( t ) a r  p(r) exp(-t/z) dr  
0 

(3) 

would mimic non-exponential pattems such as (1) and (2). However, such an 
approach is arbitrary on the microscopic level and therefore, it does not explain the 
universality of the measured patterns. 

In this article we take another road. The starting point is the observation that 
fractional culculur is extremely useful for the mathematical description of the rheolo- 
gical behaviour of several classes of materials [4,12,13]. Replacing in the stress- 
strain relationship of the dashpot or the Maxwell model the first-order time deriva- 
tives (dldf) by fractional derivatives (dY/drY) of non-integer orders y (O<y==z l), 
equations of this type describe stress relaxation showing an algebraic decay (cf 
equation (2)) or more complicated pattems with crossover behaviour, respectively. 
The problem encountered by this approach, however, is that the expressions are 
rather formal and that no realizations of such abstract models are presented. 
Especially, no physical justification for the range of parameters is given. 

In this work we present mechanical analogues for the generalized differential 
equations. The models are hierarchically built and consist of springs and dashpots. 
They simulate the generalized dashpot or the generalized Maxwell model to any given 
degree of accuracy and allow a lucid interpretation of the fractional rheological 
constitutive equations. 

An analysis of the models reveals that their characteristic feature are hierarchically 
constrained dynamics in the sense of Palmer et al. [14], who studied the decay of 
coupled spin systems relaxing in a serial hierarchical fashion. 

2. Fractional calculus and applications to viscoelasticity 

The extension of classical calculus to its fractional counterpart can be most readily 
seen from a notation which unifies ordinary integration and differentiation: 

daf - (t) = dt" 

together with the Riemann-LiouviIle integral [15] 

- ( t )=-  dr. (5) 

For a=-1, -2, -3 , .  . . one obtains namely Cauchy's formula for repeated integ- 
ration [15] so that (4c) and (5) are equivalent. Now, the basic idea is that (5) can be 
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readily extended to all a CO. This defines~ fractional integration. .Furthermore the 
domain of validity is extended to a >O by setting 

where the integer n is chosen such that n>a.  Since definition (6) does not depend on 
n, one has thus defined the so-called differintegratioa of arbitrary order. 

In the following, two properties of the fractional expressions are relevant: the 
composition rule and the behaviour under Laplace transformation. In general, the 
composition rule 

da dnf d"+Pf 
dta dP- dta+fi (7) 

is not valid. However. equation (7) holds for arbitrary values of p when restricted to 
the special class of differintegrable series (containing Taylor series) as long as a <O; it 
holds even for a < l  iff is bounded at t=O [U]. 

The Laplace transform of a function f, f, is defined through 

f(s) = 1: e-"f(t) dt 

and one has for arbitrary a 1151 

where n is an integer chosen such that n - 1 <a Gn.  Hence the sum vanishes for n GO. 
Equation (9) is a generalization for Laplace transforms of integer-order derivatives 
and of multiple integrals and provides a convenient means to express fractional 
derivatives. 

Differential equations with at least one derivative of non-integer order are called 
extraordinary differential equations[l5]. In the following, two such relationships are 
used. As can be calculated from definition (6) ,  the solution of the first one 

with YE (0,l) shows algebraic relaxation behaviour 

" 

=fo - (4 
for a Heaviside-type input f(t) =f@(t). 

overs) the following extraordinary differential equation is useful: 
Describing more complex relaxations (for example patterns which show cross- 

~ ~ 
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with O < a s ' p s l .  For given f(t)=foO(t), the Laplace transform of g simply fulfills 
(see equation (9)) 

H Schiessel and A Blumen 

Series expansion of (13) and termwise inverse transformation yield [I31 

The asymptotic behaviour 

for p < 1 follows for small t directly from (14), whereas the long-time behaviour can be 
derived from Tauberian theorems [16]. 

Rheological constitutive equations with fractional derivatives similar to (10) and 
(12) are very useful for describing the stress-strain relationship of polymers and other 
viscoelastic materials. The differential equation 

dye 
u(t) = r]vE1-vz (t) 

with Y E  (0,l) is an interpolation between Hooke's law describing solid behaviour, i.e. 
y = o  

u(t) =E&@) (17) 
and Newton's law describing fluid behaviour, i.e. y = 1 

dE 

dt u(t) = r ]  - (t) .  

In equations (17) and (18), E and 7 denote the spring constant and the viscosity, 
respectively. 

After a strain jump e(t) =euO(t), we recover from (11) Nutting's law [3]: 
c.Y ' 

u(t) = €&E'-Y-@(t). 
- Y )  

The Maxwell model for viscoelasticity consists of a spring and a dashpot in series. As 
can be easily seen, the stress-strain relationship fulfills 

do dE 
dt dt 

u(t) +a- ( t )  =dE-(t) 

with the relaxation time A=r]/E. Clearly, after a jump in the strain, the right-hand 
side (RHS) of (20) is proportional to a delta function and the stress relaxes exponen- 
tially. In recent years a series of works were devoted to describing more complex 
relaxation patterns by replacing in (20) the ordinary derivatives of stress and strain by 
fractional derivatives of orders a and p, respectively [4,13,17]: 
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The discussion presented by Friedrich [13] about this stress-strain relationship, the 
so-called generalized Maxwell model, indicates that the behaviour of the solution is 
thermodynamically reasonable if the coefficients a and p obey O<a <,!I< 1. Equation 
(21) interpolates between the usual Maxwell model (20) (a=p= 1) and Hooke’s law 
(17) (a=p=O). After a given strain jump E ( t )  =&@(t). the relaxation function of the 
stress fullills (see equation (14)) 

and shows therefore the asymptotic behaviour given in (15). 

3. Mechanical analogues 

We now proceed by first presenting a mechanical model (a generalization of the semi- 
integrating electrical circuit of [U] and its mechanical analogue., the so-called 
Gross-Marvin model [ll]) and displaying the system of coupled linear differential 
equations which it fulfills. As we proceed to show, the system leads to continued- 
fraction expressions, which (in the limit of an infinite mechanical arrangement) are 
solutions of the fractional equation (10). In order to explain the current behaviour at 
an electrode-electrolyte interface, similar electrical models were constructed [18,19]. 
However, these models were not related to fractional calculus. The arrangement of 
our model is shown in figure 1. It consists of a ladder-like structure with springs along 
one of the struts and dashpots on the rungs of the ladder. The following system of 
linear differential equations (23)-(26) describes the relationship between the stresses 
and the strains for all single structural parts of this finite arrangement. We denote by 
& and .$the elongations of the spring Ek and the dashpot qa, respectively, and choose 

Figure 1. Diagram of the finite mechanical arrangement used to simulate the generalized 
dashpot (see text). 
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an analogous notation for the stresses. We note in particular: 

H Schiessel and A Blumen 

(a) The additivity of the strains (as can be seen from the elongations) 

EWd=&+i+Ef+i k = O , l ,  ..., n - 2  ( 2 3 4  

where the situation at the upper and the lower ends of this sections is 

E = & + € :  (236) 

and 

E:-l = E",. 

(b) The additivity of the stresses, due to the parallel arrangement: 

da=dxct+Uf k = 0 , 1 , .  . . ,n-1 (244  

complemented by the situation at the end of the ladder 

U=&. ~. (246) 

(c) Each structural part (dashpot or spring) obeys an equation analogous to (17) 

1 h-Ekdk  -_ 

or to (U) 

(d) Furthermore, causality implies that 

€ ( S O )  = U ( t S 0 )  =o. (26) 

Now the aim is to get a relation between the Laplace transform of the elongation, b, 
and the Laplace transform of the stress, b. Combining equations (23a) and (25a), we 
obtain 

Ek+i$Xs) =G+I(s) +&+i&+i(s) k=O, 1,. . . ,n-2.  (27) 
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Furthermore, using equations (242) and (25b), we get, noting (9) for a = 1 and the 
initial condition (26) 

from which it follows that 

A special case is 

where (30) is used for establishing the equivalence on the RHS. After n - 2 analogous 
steps we obtain 

a very convenient reuresentation of the auotient Z(s)/O(s) as a continued fraction. 
Nbw, the followihg relation holds foiall x >  -1'and real y (equation (6.1.16) of 

[20l): 

l.(O+y) 1.(2-y) 2*(1+y) 2-(3-y) 
X X X 

(33) 
2.3 . 3.4 4.5 

1+ 1+ 1+ 1+ ..'. 
X 

x (1-y)x 1.2 
x(x+l)Y-'=-- 1+ 1+ 

For -1 <x~< 1 this can be easily seen by solving its terminating approximations; in this 
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regime (33) corresponds to the binomial series (cf equation (3.6.8) of [Zl]). The RHS 
of (33) parallels now (32). Hence, choosing the parameters Ek and qr such that 

H Schiessel and A Blumen 

Eho=(l-y)co E1h= 1.2 co, etc. (34) 
1 - (O+Y) 

with co=Edqo, we obtain from (32) 

(n - 1) (n -4 , . ., cols 
Z(s) co/s(l-y)c~ls (2n-1)(2n-2) Eo--i I_ 
8 1+ 1 +  ... 1 

As can be seen from (33), we get €or n-t  m 

w 
4s)  

Eo -5 1 + (cols) (cols + 1)y-l. 

Given a preset 6(6+1) one has fors  small (s<c&”) the approximation 

Eo-= (c~/s)~ (37) 4 s )  
where the error in going from (36) to (37) is less than 6. 

To display even better the domain of validity of (37) as an approximation to (35) 
we have plotted in figures 2 and 3 the quotient of the respective RHS. We have 
analysed the expression for several special cases and indeed found that (37) holds well 
(the relative error 6 is smaller than Om), as long as the condition c+/s E (lOO”Y, n’l10) 
is obeyed. Here the upper bound is due to the truncation error of the continued 
fraction whereas the lower limit follows from the approximation of (36) by (37). 

Thus, in this range we have to a very good approximation 

a(s) = q @ ; - 3 y t ( s ) .  (38) 
Because of the boundary condition (26) we can read directly from (38) that its inverse 
Laplace transform (see equation (9)) obeys 

@& 
o(t) = ?@p- d f  ( t )  (39) 

for all t-values within the interval (lOO”~lco, nz/(lOco)). 
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FIgure2. Comparison of the terminating continued fraction EoZ(s)/a(s) of equation (35) 
with (cds)’ for different values of n. The semilogarithmic plot shows y =  
(E&(s)/$(s))/(cds)y versus x=cds for y=O.9. 
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Figure3. Same as figure 2, but y=O.5. 
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Hence in this range our  mechanical^ analogue indeed fulfdls the condition 
requested for the solution of our initial fractional expression, equation (16), if we 
choose the constants in such a way as to have 

q&-Y= vYE’-Y, (40) 

We hasten to note that if we take the limit n-+m in such a way that qo/Eo=lln is 
obeyed we can extend the range of validity of (16) to all positive times. 

Now a mechanical construction which obeys the generalized (fractional) Maxwell 
model, equation (Zl), is easily obtained. We show it in figure 4; it consists of a serial 
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arrangement of two hierarchical systems. The strains of the two sections (i= 1 and 2) 
are coupled through 

H Schiessd and A Blumen 

E = E ~ + E ; ~  (41) 

whereas the stresses are equal: 

u = q = u ~ .  (42) 

If we choose the orders of differentiation as 

n=B-a Y2=B 

the two sections fulfill 

(43) 

and 

for all suitable f (cf equation (39)). Applying the operator d7dP to both sides of (44) 
and using the composition rule (7) which holds since ,9 - a < 1 and E~ is bounded at 
r=O, we obtain 

Remembering now that E = + E* and U= ul = u2 it follows from (45) and (46) that 

as long as t obeys 

with c$'=Efi'/r]&'?. Hence in this range our mechanical analogue indeed fulfills the 
condition requested for the fractional expression of the generalized Maxwell model, 
equation (21), if we choose the constants in such a way as to have 

(r16Z))-8(E6Z))8-'=n-#E-I (48) 

In the limit n+ m, such that qfi'/Ek)= lln, the range of validity of (21) extends to all 
positive times. 
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In the following we consider several physical properties of this model. We focus 
first on the E t )  and qt’ which, using (34), obey the explicit forms 

E p = ( l - y i ) E p  (504 

and 

In (50) the G) are generalized binomial coefficients 

x ( x - ~ ) ( x - ~ ) .  . . ( x - k + l )  r(x + 1) 
(51) - - (;) = k! T(x+l-k)r(k+l)  

withxeIR andkEZN. 
Using Stirling’s formula (equation (6.1.37) in [21]) 

r ( x ) Z & x x - 1 ’ 2  e-’ (52) 
we get for the spring constants and viscosities the following algebraic k-dependence 
for large k 

and 

Now we are ready to discuss the implications of these expressions. We note first that 
the cases yi<O and yi>l  lead for some k to negative values of (‘:?p) and (k-pt’”.) 
(yi<O) and (k:yt) (yi>l). From (506) and (50c) it follows that some spring constants 
and viscosities would become negative. Hence our model shows directly that the 
requirements O S y , = p - a S l  and OGy2=pG1 are necessary to obtain positive 
values for Ef] and qf’ (cf equations (50a)-(50c)). According to [13], Friedrich has 
shown (by analysing the relaxation function) that the condition O<aSj3S 1 leads to 
thermodynamic compatibility. From our expressions we obtain the same relation for 
a>O. 

Moreover, as can be seen from (50a)-(50c), the case y2 = p  = 1 leads to Ee)= qf)= 
0 for all k >  1 since then the terms (1 - y2)  and (‘Ty2) vanish. Therefore the lower 
hierarchy (i=2) is replaced by a simple Maxwell element and shows fluid-like 
behaviour. For yz=8<1 all spring constants are positive (cf equations (50a) and 
(506)) and the arrangement figure 4 has an uninterrupted series of springs between its 
upper and lower ends. For that reason, the stress U approaches infinity with increasing 
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Figures. Internal dynamical behaviour of the one-ladder model figure 1. The plot shows 
E;O) versus f and k for y =  0.4. 

E ,  and the model behaves in a solid-like manner. This is in accordance with [13], where 
Friedrich derived (by studying the asymptotic behaviour of the relaxation function) 
fluid-like behaviour of the fractional Maxwell model only in the case B = 1. 

In the following we consider the internal dynamical behaviour of our model. We 
restrict the analysis to the one-ladder model with a finite n (cf equations (23)-(26) and 
figure 1). After a sudden strain jump ~ ( t )  = ~ @ ( t ) ,  only the first spring Eo is deformed 
( & = E ~ )  whereas the dashpot ‘lo behaves in a rigid manner. The stress set up in the 
spring will gradually relax and fade away as the piston of the dashpot ?lo overcomes the 
resistance of the damping fluid. Simultaneously the spring in parallel, El,  is deformed. 
In this way the deformation moves continuously into the ladder. 

Now it is possible to understand how the special choice of the material constants 
controls the exponent y of the algebraic decay of the stress u(t) @=P. As a function of 
the dependence of Et’ and r# on k,  cf equations (53) and (54), the deformation moves 
slower or faster along the ladder. This then determines the temporal behaviour of the 
stress of the whole arrangement, o=d,. 

In order to give a feeling for the process which sets in after a 0-pulsed strain of 
amplitude E ~ =  1, we display two cases in figures 5 and 6. We set A=E=l and take 
n=30. The exponent y varies between 0.4 and 0.8. The other constants are fixed by 
the conditions (40) and #/E$’= lln. The plots show ~ x t )  versus t and k. As can be 
easily seen, for larger y the deformation penetrates the ladder faster. The picture for 
small y is in fact strongly reminiscent of the behaviour of photoconductive current 
under dispersive conditions [5].  

Figure6 Same as figure 5, but y=O.8 
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Summarizing, our model is an example of hierarchically constrained dynamics 
where the system relaxes in serial fashion. 

4. Conclusions 

In this work we have presented mechanical arrangements which permit simulation of 
the generalized dashpot and the generalized Maxwell model; from these arrangements 
some physical properties of the fractional rheological constitutive equations become 
evident by inspection. Thus, we have shown that the condition O<aS/3 required for 
the thermodynamic compatibility of the generalized Maxwell model translates here 
into the demand of positive viscosities and spring constants. Furthermore, the model 
shows fluid behaviour only for /3 = 1, where one hierarchical ladder-arrangement gets 
replaced by a simple Maxwell element. 

The basic features entering the mechanical models are hierarchically constrained 
dynamics, in line with the underlying physics of relaxation phenomena in many 
complex systems. 
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